Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Eur J Med Res ; 27(1): 26, 2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1704356

ABSTRACT

OBJECTIVE: To determine the effect of polymorphisms and mutations in angiotensin-converting enzyme 2 (ACE2) and Type 2 transmembrane serine proteases (TMPRSS2) genes on susceptibility to corona virus disease 2019 (COVID-19) and patient prognosis. INTRODUCTION: From December 2019 to the current time, an outbreak of epidemic of COVID-19, characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred around the world. It is now clear that SARS-CoV-2 binds to human ACE2 receptors, with expression of these receptors correlated with the rate of SARS-CoV-2 infection and mortality. Polymorphisms in individual patient factors, such as ACE2 and TMPRSS2 genes have been linked with an increase in negative outcomes, although evidence to affirm remains debatable. METHODS: Here, we performed a systematic review, based on guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, with the aim of assessing whether polymorphisms in ACE2 and TMPRSS2 genes affect the COVID-19 condition. We extensively searched PubMed, MEDLINE, Embase, the Cochrane Library, and Web of Science databases, for relevant articles and reports published in English between December 2019 and December 2021. RESULTS: A total of 495 full-text articles were downloaded, of which 185 were excluded after preliminary examination as they were duplicates. Finally, 310 articles were evaluated, by reading their titles and abstracts, and 208 of them eliminated based on our selection criteria. Finally, 33 articles met our inclusion criteria and were included in the final assessment. Genetic data from 33,923 patients with COVID-19 drawn from the general population and deriving from over 160 regions and 50 countries, as well as approximately 560,000 samples from global-public genetic databases, were included in our analysis. Ultimately, we identified 10 SNPs and 21 mutations in the ACE2 gene, along with 13 SNPs and 12 variants in the TMPRSS2 gene, which may be associated with COVID-19. CONCLUSIONS: ACE2 and TMPRSS2 play vital roles in the onset, development, and prognosis of SARS-CoV-2 infection, and have both been strongly associated with vulnerability, intensity, and the clinical result of COVID-19. Overall, these genetic factors may have potential for future development of personalized drugs and vaccines against COVID-19. TRIAL REGISTRATION: CRD42021239400 in PROSPERO 2021.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Mutation , Polymorphism, Single Nucleotide , SARS-CoV-2 , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/physiology , COVID-19/etiology , Genetic Predisposition to Disease , Humans , Serine Endopeptidases/physiology
2.
Mediators Inflamm ; 2022: 7423537, 2022.
Article in English | MEDLINE | ID: covidwho-1677414

ABSTRACT

The COVID-19 pandemic is rapidly spreading, and health care systems are being overwhelmed with the huge number of cases, with a good number of cases requiring intensive care. It has become imperative to develop safe and effective treatment strategies to improve survival. In this regard, understanding the pathogenesis of COVID-19 is highly important. Many hypotheses have been proposed, including the ACE/angiotensin-II/angiotensin receptor 1 pathway, the complement pathway, and the angiotensin-converting enzyme 2/mitochondrial assembly receptor (ACE2/MasR) pathway. SARS-CoV-2 binds to the ACE2 on the cell surface, downregulating the ACE2, and thus impairs the inactivation of bradykinin and des-Arg9-bradykinin. Bradykinin, a linear nonapeptide, is extensively distributed in plasma and different tissues. Kininogens in plasma and tissue are the main sources of the two vasoactive peptides called bradykinin and kallidin. However, the role of the dysregulated bradykinin pathway is less explored in the pathogenesis of COVID-19. Understanding the pathogenesis of COVID-19 is crucial for the development of new effective treatment approaches which interfere with these pathways. In this review, we have tried to explore the interaction between SARS-CoV-2, ACE2, bradykinin, and its metabolite des-Arg9-bradykinin in the pathogenesis of COVID-19.


Subject(s)
Bradykinin/physiology , COVID-19/etiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/physiology , Humans , Kallikrein-Kinin System/physiology , Receptors, Bradykinin/physiology , COVID-19 Drug Treatment
3.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1667192

ABSTRACT

This review article was designed to evaluate the existing evidence related to the molecular processes of SARS-CoV-2 infection in the oral cavity. The World Health Organization stated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission is produced by respiratory droplets and aerosols from the oral cavity of infected patients. The oral cavity structures, keratinized and non-keratinized mucosa, and salivary glands' epithelia express SARS-CoV-2 entry and transmission factors, especially angiotensin converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Replication of the virus in cells leads to local and systemic infection spread, and cellular damage is associated with clinical signs and symptoms of the disease in the oral cavity. Saliva, both the cellular and acellular fractions, holds the virus particles and contributes to COVID-19 transmission. The review also presents information about the factors modifying SARS-CoV-2 infection potential and possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the oral cavity. The PubMed and Scopus databases were used to search for suitable keywords such as: SARS-CoV-2, COVID-19, oral virus infection, saliva, crevicular fluid, salivary gland, tongue, oral mucosa, periodontium, gingiva, dental pulp, ACE2, TMPRSS2, Furin, diagnosis, topical treatment, vaccine and related words in relevant publications up to 28 December 2021. Data extraction and quality evaluation of the articles were performed by two reviewers, and 63 articles were included in the final review.


Subject(s)
COVID-19/pathology , Mouth , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Humans , Mouth/metabolism , Mouth/pathology , Mouth/virology , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Mouth Mucosa/virology , Pathology, Oral , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Serine Endopeptidases/physiology , Signal Transduction/genetics , Virus Internalization
4.
Pharmacol Res Perspect ; 10(1): e00917, 2022 02.
Article in English | MEDLINE | ID: covidwho-1664438

ABSTRACT

SARS-CoV-2 interacting with its receptor, angiotensin-converting enzyme 2 (ACE2), turns the host response to viral infection into a dysregulated uncontrolled inflammatory response. This is because ACE2 limits the production of the peptide angiotensin II (Ang II) and SARS-CoV-2, through the destruction of ACE2, allows the uncontrolled production of Ang II. Recovery from trauma requires activation of both a tissue response to injury and activation of a whole-body response to maintain tissue perfusion. Tissue and circulating renin-angiotensin systems (RASs) play an essential role in the host response to infection and injury because of the actions of Ang II, mediated via its AT1 receptor. Both tissue and circulating arms of the renin angiotensin aldosterone system's (RAAS) response to injury need to be regulated. The effects of Ang II and the steroid hormone, aldosterone, on fluid and electrolyte homeostasis and on the circulation are controlled by elaborate feedback networks that respond to alterations in the composition and volume of fluids within the circulatory system. The role of Ang II in the tissue response to injury is however, controlled mainly by its metabolism and conversion to Ang-(1-7) by the enzyme ACE2. Ang-(1-7) has effects that are contrary to Ang II-AT1 R mediated effects. Thus, destruction of ACE2 by SARS-CoV-2 results in loss of control of the pro-inflammatory actions of Ang II and tissue destruction. Therefore, it is the response of the host to SARS-CoV-2 that is responsible for the pathogenesis of COVID-19.


Subject(s)
COVID-19/etiology , Renin-Angiotensin System/physiology , SARS-CoV-2/physiology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/physiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Drug Repositioning , Humans , Inflammation/etiology , Renin/antagonists & inhibitors , COVID-19 Drug Treatment
5.
J Mol Biol ; 434(3): 167213, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1654786

ABSTRACT

The novel SARS-CoV-2 virus outbreak is the major cause of a respiratory disease known as COVID-19. It has caused a global pandemic and has resulted in mortality in millions. The primary mode of infection is respiratory ailments, however, due to multi-organ complications, COVID-19 patients displays a greater mortality numbers. Due to the 3Rs Principle (Refine, Reduce, Replacement), the scientific community has shifted its focus to 3D organoid models rather than testing animal models. 3D organoid models provide a better physiological architecture as it mimics the real tissue microenvironment and is the best platform to recapitulate organs in a dish. Hence, the organoid approach provides a more realistic drug response in comparison to the traditional 2D cellular models, which lack key physiological relevance due to the absence of proper surface topography and cellular interactions. Furthermore, an adverse outcome pathway (AOPs) provides a best fit model to identify various molecular and cellular events during the exposure of SARS-CoV-2. Hence, 3D organoid research provides information related to gene expression, cell behavior, antiviral studies and ACE2 expression in various organs. In this review, we discuss state-of-the-art lung, liver and kidney 3D organoid system utilizing the AOPs to study SARS-CoV-2 molecular pathogenesis. Furthermore, current challenges are discussed for future application of 3D organoid systems for various disease states.


Subject(s)
Models, Biological , Organoids , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/physiology , COVID-19/virology , Humans , Multiple Organ Failure/virology , SARS-CoV-2/isolation & purification
6.
Oxid Med Cell Longev ; 2022: 5397733, 2022.
Article in English | MEDLINE | ID: covidwho-1635531

ABSTRACT

The infection of coronavirus disease (COVID-19) seriously threatens human life. It is urgent to generate effective and safe specific antibodies (Abs) against the pathogenic elements of COVID-19. Mice were immunized with SARS-CoV-2 spike protein antigens: S ectodomain-1 (CoV, in short) mixed in Alum adjuvant for 2 times and boosted with CoV weekly for 6 times. A portion of mice were treated with Maotai liquor (MTL, in short) or/and heat stress (HS) together with CoV boosting. We observed that the anti-CoV Ab was successfully induced in mice that received the CoV/Alum immunization for 2 times. However, upon boosting with CoV, the CoV Ab production diminished progressively; spleen CoV Ab-producing plasma cell counts reduced, in which substantial CoV-specific Ab-producing plasma cells (sPC) were apoptotic. Apparent oxidative stress signs were observed in sPCs; the results were reproduced by exposing sPCs to CoV in the culture. The presence of MTL or/and HS prevented the CoV-induced oxidative stress in sPCs and promoted and stabilized the CoV Ab production in mice in re-exposure to CoV. In summary, CoV/Alum immunization can successfully induce CoV Ab production in mice that declines upon reexposure to CoV. Concurrent administration of MTL/HS stabilizes and promotes the CoV Ab production in mice.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Apoptosis , COVID-19/immunology , Plasma Cells/immunology , SARS-CoV-2/physiology , Superoxide Dismutase-1/physiology , Adjuvants, Immunologic , Alcoholic Beverages , Alum Compounds , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/enzymology , COVID-19 Vaccines/immunology , Heat-Shock Response , Immunization, Secondary , Immunogenicity, Vaccine , Janus Kinase 2/physiology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Plasma Cells/drug effects , Plasma Cells/pathology , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/physiology , Signal Transduction , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccination
7.
Emerg Microbes Infect ; 11(1): 406-411, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1595567

ABSTRACT

Patients with recent pandemic coronavirus disease 19 (COVID-19) complain of neurological abnormalities in sensory functions such as smell and taste in the early stages of infection. Determining the cellular and molecular mechanism of sensory impairment is critical to understand the pathogenesis of clinical manifestations, as well as in setting therapeutic targets for sequelae and recurrence. The absence of studies utilizing proper models of human peripheral nerve hampers an understanding of COVID-19 pathogenesis. Here, we report that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects human peripheral sensory neurons, leading to molecular pathogenesis for chemosensory impairments. An in vitro system utilizing human embryonic stem cell (hESC)-derived peripheral neurons was used to model the cellular and molecular pathologies responsible for symptoms that most COVID-19 patients experience early in infection or may develop as sequelae. Peripheral neurons differentiated from hESCs expressed viral entry factor ACE2, and were directly infected with SARS-CoV-2 via ACE2. Human peripheral neurons infected with SARS-CoV-2 exhibited impaired molecular features of chemosensory function associated with abnormalities in sensory neurons of the olfactory or gustatory organs. Our results provide new insights into the pathogenesis of chemosensory dysfunction in patients with COVID-19.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , SARS-CoV-2 , Sensory Receptor Cells/virology , Taste Disorders/etiology , Angiotensin-Converting Enzyme 2/physiology , Humans
8.
Viral Immunol ; 34(3): 165-173, 2021 04.
Article in English | MEDLINE | ID: covidwho-1569564

ABSTRACT

The current pandemic is caused by the coronavirus disease 2019 (COVID-19), which is, in turn, induced by a novel coronavirus (SARS-CoV-2) that triggers an acute respiratory disease. In recent years, the emergence of SARS-CoV-2 is the third highly pathogenic event and large-scale epidemic affecting the human population. It follows the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. This novel SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor, like SARS-CoV, and spreads principally in the respiratory tract. The viral spike (S) protein of coronaviruses facilities the attachment to the cellular receptor, entrance, and membrane fusion. The S protein is a glycoprotein and is critical to elicit an immune response. Glycosylation is a biologically significant post-translational modification in virus surface proteins. These glycans play important roles in the viral life cycle, structure, immune evasion, and cell infection. However, it is necessary to search for new information about viral behavior and immunological host's response after SARS-CoV-2 infection. The present review discusses the implications of the CoV-2 S protein glycosylation in the SARS-CoV-2/ACE2 interaction and the immunological response. Elucidation of the glycan repertoire on the spike protein can propel research for the development of an appropriate vaccine.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Glycosylation , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
10.
J Mol Cell Cardiol ; 164: 69-82, 2022 03.
Article in English | MEDLINE | ID: covidwho-1531870

ABSTRACT

The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , SARS-CoV-2 , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Clinical Trials as Topic , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , HMGB1 Protein/physiology , Humans , Macaca mulatta , Mice , Neuropilin-1/physiology , Oxidative Stress , Reactive Oxygen Species , Receptors, Virus/physiology , Scavenger Receptors, Class B/physiology , Severity of Illness Index , Signal Transduction , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/physiopathology , Thrombophilia/etiology , Thrombophilia/physiopathology , Vascular Endothelial Growth Factor A/physiology , Vasculitis/etiology , Vasculitis/immunology , Vasculitis/physiopathology , Young Adult
11.
Sci Rep ; 11(1): 22860, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1532106

ABSTRACT

The worse outcome of COVID-19 in people with diabetes mellitus could be related to the non-enzymatic glycation of human ACE2, leading to a more susceptible interaction with virus Spike protein. We aimed to evaluate, through a computational approach, the interaction between human ACE2 receptor and SARS-CoV-2 Spike protein under different conditions of hyperglycemic environment. A computational analysis was performed, based on the X-ray crystallographic structure of the Spike Receptor-Binding Domain (RBD)-ACE2 system. The possible scenarios of lysine aminoacid residues on surface transformed by glycation were considered: (1) on ACE2 receptor; (2) on Spike protein; (3) on both ACE2 receptor and Spike protein. In comparison to the native condition, the number of polar bonds (comprising both hydrogen bonds and salt bridges) in the poses considered are 10, 6, 6, and 4 for the states ACE2/Spike both native, ACE2 native/Spike glycated, ACE2 glycated/Spike native, ACE2/Spike both glycated, respectively. The analysis highlighted also how the number of non-polar contacts (in this case, van der Waals and aromatic interactions) significantly decreases when the lysine aminoacid residues undergo glycation. Following non-enzymatic glycation, the number of interactions between human ACE2 receptor and SARS-CoV-2 Spike protein is decreased in comparison to the unmodified model. The reduced affinity of the Spike protein for ACE2 receptor in case of non-enzymatic glycation may shift the virus to multiple alternative entry routes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Hyperglycemia/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/physiology , COVID-19/metabolism , COVID-19/pathology , Computational Biology/methods , Computer Simulation , Humans , Hyperglycemia/immunology , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/physiology
12.
PLoS Pathog ; 17(11): e1009743, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526705

ABSTRACT

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


Subject(s)
COVID-19/etiology , Receptors, Cell Surface/physiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/physiology , Animals , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Receptors, Cell Surface/antagonists & inhibitors , Virus Internalization , Axl Receptor Tyrosine Kinase , COVID-19 Drug Treatment
13.
PLoS Comput Biol ; 17(11): e1009560, 2021 11.
Article in English | MEDLINE | ID: covidwho-1523396

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.


Subject(s)
COVID-19/genetics , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/virology , SARS-CoV-2/genetics , Adaptation, Physiological/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , CD13 Antigens/genetics , CD13 Antigens/physiology , Common Cold/genetics , Common Cold/virology , Computational Biology , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/physiology , Evolution, Molecular , Genomics , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Host Specificity/genetics , Host Specificity/physiology , Humans , Mammals/genetics , Mammals/virology , Phylogeny , Protein Interaction Domains and Motifs/genetics , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2/physiology , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization
14.
Adv Sci (Weinh) ; 9(2): e2103240, 2022 01.
Article in English | MEDLINE | ID: covidwho-1508603

ABSTRACT

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research, the current treatment options show limited curative efficacies. Here the authors report a strategy incorporating neutralizing antibodies conjugated to the surface of a photothermal nanoparticle (NP) to capture and inactivate SARS-CoV-2. The NP is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with high-affinity neutralizing antibodies. The multifunctional NP efficiently captures SARS-CoV-2 pseudovirions and completely blocks viral infection to host cells in vitro through the surface neutralizing antibodies. In addition to virus capture and blocking function, the NP also possesses photothermal function to generate heat following irradiation for inactivation of virus. Importantly, the NPs described herein significantly outperform neutralizing antibodies at treating authentic SARS-CoV-2 infection in vivo. This multifunctional NP provides a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus it is expected to provide a broad range of protection against original SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , Immunoconjugates/administration & dosage , Nanoparticles , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/immunology , COVID-19/virology , Drug Evaluation, Preclinical , Hot Temperature , Humans , Immunoconjugates/immunology , Immunoconjugates/therapeutic use , Light , Mice , Nanoparticles/therapeutic use , Phosphatidylethanolamines , Polyethylene Glycols , Polymers , Receptors, Virus/physiology , Semiconductors , Spike Glycoprotein, Coronavirus/immunology , Thiadiazoles , Virus Inactivation
15.
J Cell Biochem ; 123(2): 347-358, 2022 02.
Article in English | MEDLINE | ID: covidwho-1499273

ABSTRACT

As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is responsible for the associated coronavirus disease (COVID-19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID-19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS-CoV-2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS-CoV-2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Lopinavir/pharmacology , Receptors, Virus/drug effects , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/therapeutic use , Binding Sites , Catalytic Domain/drug effects , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/physiology , Datasets as Topic , Drug Repositioning , Energy Transfer , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Receptors, Virus/physiology , Ritonavir/therapeutic use
16.
Hamostaseologie ; 41(5): 387-396, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483190

ABSTRACT

Hypercoagulability and vascular injury, which characterize morbidity in COVID-19 disease, are frequently observed in the skin. Several pathomechanisms, such as inflammation caused by angiotensin-converting enzyme 2-mediated uptake into endothelial cells or SARS-CoV-2-initiated host immune responses, contribute to microthrombus formation and the appearance of vascular skin lesions. Besides pathophysiologic mechanisms observed in the skin, this review describes the clinical appearance of cutaneous vascular lesions and their association with COVID-19 disease, including acro-ischemia, reticular lesions, and cutaneous small vessel vasculitis. Clinicians need to be aware that skin manifestations may be the only symptom in SARS-CoV-2 infection, and that inflammatory and thrombotic SARS-CoV-2-driven processes observed in multiple organs and tissues appear identically in the skin as well.


Subject(s)
COVID-19/complications , SARS-CoV-2 , Skin/blood supply , Angiotensin-Converting Enzyme 2/physiology , Antibodies, Antiphospholipid/blood , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/pathology , COVID-19/pathology , COVID-19/physiopathology , Complement Activation , Cytokines/metabolism , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Microvessels/immunology , Microvessels/pathology , Microvessels/physiopathology , Pandemics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Skin/immunology , Vasculitis/etiology , Vasculitis/pathology , Vasculitis/physiopathology , Virus Internalization
17.
Acta Physiol (Oxf) ; 233(4): e13733, 2021 12.
Article in English | MEDLINE | ID: covidwho-1437975

ABSTRACT

The molecular link between SARS-CoV-2 infection and susceptibility is not well understood. Nonetheless, a bi-directional relationship between SARS-CoV-2 and diabetes has been proposed. The angiotensin-converting enzyme 2 (ACE2) is considered as the primary protein facilitating SARS-CoV and SARS-CoV-2 attachment and entry into the host cells. Studies suggested that ACE2 is expressed in the endocrine cells of the pancreas including beta cells, in addition to the lungs and other organs; however, its expression in the islets, particularly beta cells, has been met with some contradiction. Importantly, ACE2 plays a crucial role in glucose homoeostasis and insulin secretion by regulating beta cell physiology. Given the ability of SARS-CoV-2 to infect human pluripotent stem cell-derived pancreatic cells in vitro and the presence of SARS-CoV-2 in pancreatic samples from COVID-19 patients strongly hints that SARS-CoV-2 can invade the pancreas and directly cause pancreatic injury and diabetes. However, more studies are required to dissect the underpinning molecular mechanisms triggered in SARS-CoV-2-infected islets that lead to aggravation of diabetes. Regardless, it is important to understand the function of ACE2 in the pancreatic islets to design relevant therapeutic interventions in combatting the effects of SARS-CoV-2 on diabetes pathophysiology. Herein, we detail the function of ACE2 in pancreatic beta cells crucial for regulating insulin sensitivity, secretion, and glucose metabolism. Also, we discuss the potential role played by ACE2 in aiding SARS-COV-2 entry into the pancreas and the possibility of ACE2 cooperation with alternative entry factors as well as how that may be linked to diabetes pathogenesis.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Diabetes Mellitus , Insulin-Secreting Cells , Angiotensin-Converting Enzyme 2/physiology , Humans , Insulin-Secreting Cells/physiology , SARS-CoV-2
18.
Trop Biomed ; 38(3): 360-365, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1404405

ABSTRACT

COVID-19, caused by the SARS-CoV-2 virus, can lead to massive inflammation in the gastrointestinal tract causing severe clinical symptoms. SARS-CoV-2 infects lungs after binding its spike proteins with alveolar angiotensin-converting enzyme 2 (ACE2), and it also triggers inflammation in the gastrointestinal tract. SARS-CoV-2 invades the gastrointestinal tract by interacting with Toll-like receptor-4 (TLR4) that induces the expression of ACE2. The influx of ACE2 facilitates cellular binding of more SARS-CoV-2 and causes massive gastrointestinal inflammation leading to diarrhea. Diarrhea prior to COVID-19 infection or COVID-19-induced diarrhea reportedly ends up in a poor prognosis for the patient. Flavonoids are part of traditional remedies for gastrointestinal disorders. Preclinical studies show that flavonoids can prevent infectious diarrhea. Recent studies show flavonoids can inhibit the multiplication of SARS-CoV-2. In combination with vitamin D, flavonoids possibly activate nuclear factor erythroid-derived-2-related factor 2 that downregulates ACE2 expression in cells. We suggest that flavonoids have the potential to prevent SARS-CoV-2 induced diarrhea.


Subject(s)
COVID-19/complications , Diarrhea/prevention & control , Flavonoids/therapeutic use , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/physiology , Diarrhea/etiology , Humans
20.
Neuropharmacology ; 198: 108766, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1376075

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.


Subject(s)
COVID-19/epidemiology , Drug Misuse/statistics & numerical data , SARS-CoV-2 , Substance-Related Disorders/epidemiology , Adaptation, Psychological , Angiotensin-Converting Enzyme 2/physiology , Animals , Axons/virology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/psychology , Comorbidity , Disease Susceptibility , Endothelial Cells/virology , Humans , Immunity, Innate , Inflammation/etiology , Kynurenine/metabolism , Neurons/virology , Neurotransmitter Agents/metabolism , Olfactory Mucosa/virology , Pandemics , SARS-CoV-2/physiology , Social Isolation , Stress, Psychological , Substance-Related Disorders/etiology , Substance-Related Disorders/physiopathology , Tryptophan/metabolism , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL